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Summary: The small amplitude motions of a plane interface between two fluids
stressed by an initially perpendicular electric field are investigated. The
fluids are modeled as ohmic conductors and the convection of the surface charge
caused by the dynamic interplay of interfacial electric shear stresses and the
viscous stresses is highlighted. The influence of viscosity on instability
growth rates in the zero-shear stress limits of perfectly conducting and per-
factly insulating interfaces is described and compared to cases involving elec-
trical shear stresses. Detailed attention is given to the instability of an
interface between fluids having electrical relaxation times long compared to
times of interest. It is shown that, for meny common liquids, even a slight
amount of surface charge makes the interface unstable at a considerably lower
voltage than would be expected from theories based on the dielectrophoretic
limit of no interfacial free charge. Experiments, performed using high frequency
ac stressés, gradually increased dc fields, and abruptly applied dc fields, sup-
port the theoretical model. Instability conditions for two liquids having short
relaxation times are developed to show sﬂear stresses-are not important unless

conductivities are the same order of magnitude. In the general case, the elec-
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tric Hartmann number is identified as an index to the dominance of the
electric shear stresses over the viscous shear stresses in determining the
interfacial convection of free charge. In the limit of large electric Hart-
mann number, the ;nterface behaves essentially as a perfect conductor with

the electric stress giving static iﬁstability.

I. INTRODUCTION

Electrohydrodynamic instability of the interface between two fluids stressed
by an initially perpendicular electric field has received considerable atten-—
tion.(l’ga) Even so, there remain major disparities between experimental obser-
vations and theoretical explanations thus far developed. Such discrepancies
can often be traced to the finite free charge relaxation time, which in turn
leads to interfacial electric shear forces.

In order that a fluid interface stressed by an electric field be free of
shear stresses, there must either be no free charge on the interface (in which
case interfacial forces are entirely due to induced polarization), or the inter-
‘;ace must be perfectly conducting. If the dynamics are influenced by the finite
free charge relaxation time, neither of these limiting cases pertains; electrical
shear force effects are involved. It follows that a self-consistent model for
this class of interactions must include a mechanism, such as viscous shears, for
placing the intérface in shear-stress equilibrium.

A. Problem

To appreciate the objectives of this work, consider an experiment in which
the initially flat interface between two fluids is stressed by a perpendicular
electric field, as shown in Fig. 1. The uniform fields Ea and Eb in the regions
(a) and (b) respectively above and below the interface are applied by means of
plane electrodes parallel to the x -~ y plane, which are driven by a potential

source. The gravitational acceleration, g, acts in the -z direction.



Fig. 1 Configuration of interface and applied electric field intensity,
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Suppose first that the lower fluid is much more highly conducting then
the upper one (water and asir, for an example) and has an electrical relaxation
time which is short compared to any electromechanical times of interest. It

(1,2,3)

is well verified that the interface is unstable at the Taylor wavelength

omk® if
s 1
saE; + ebEf) > ok* ; k% = [(ob - pa)g/T]/z (1)

where ea and Eb’ pa and pb are the respective permittivities and densities and

T is the surface tension; Even though this expression is based on the assump-
tion that charge relaxation in the lower fluid is instantanecus, experiments will
be described wherein Eq. (1) accurately predicts the onset of instability with
fluids that are highly insulating. For examplé, if in an experiment using an
electronegative gas and transformer oil (relaxation time about 10 sec.) the elec-
tric fields are raised slowly (over a period of minutes), the incipience of per-
turbations on the interface (characteristically, droplet-ejecting cusps of
revolution) is predicted by Eq. (1).

The success of the perfectly conducting model in dealing with a highly
insulating liquid is perhaps not surprising. According to the model, the prin-
ciple of exchange of stabilities applies. With an electric stress slightly
greater than that required for onset, the growth rate is very nearly zero.
Although the charges relax slowly, it can be argyed that they have no trouble
keeping up with the interfacial dynamics, because the latter might proceed at
an even slower rate. But it is more difficult to explain the observation that
the time constant for instability is far shorter than the electrical relaxation
time.

The perfectly conducting interface is one of two cases where there are no
electric shear stresses. The second is exemplified by applying én alternating

potential to the electrodes. With the period short compared to both the elec-
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trical relaxation time and electromechanical times of interest, the inter-
face does not accrue appreciable free charge and is influenced by the average
of the applied electric fields. In this "dielectrophoretic limit", it is well

(4,5)

verified that, as the fields are raised, instability sets in as

(e, - eb)zEaEb/(ea tg) = o7 (2)
where Ea and Eb are the rms values of the applied fields.

With the exception of highly polar liquids, the polarization instability
predicted by Eq. (2) is a weak effect compared to the free charge instability
of Eq. (1), in the sense that a much greater voltage is required in the second
case.

Consider a third experiment which seemingly should be described by Eq. (2).
Fluids are used which have long electrical relaxation times compared to the dy-
namical times of interest (for instance, a 10 sec. relaxation time compared to
a fraction of a second for an instsbility to develop). The voltage is applied
to the electrodes as a step after the electrodes have been shorted for many
relaxation times. If the applied voltage is sufficient that Eq. (1) is satis-
fied, instabilities appear in a fraction of a second. This is true even though
the conditions for polarization instebility as given by Eq. (2) are far from
satisfied. It would seem that only purely polarization effects should come
into play for experiments having a duration short compared to the electrical
relaxation time; however, fhe simple experiment does not support this view,
and characterizes the type of observations that still require physical explana-
tion.

In the following sections, the interfacial dynamics will be modeled by
assuming a constant surface tension and an ohmic electrical conduction confined

to the bulk of the respective fluids. On either side of the interface, the
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fluids are homogeneous, with electrical conductivies oa end 0., densities Pu
and pb, and viscosities ua and ub. Hence the electrical force density in the
bulk is zero, and the coupling between fluid and field is confined to the

interface.(6)

B. Related Work

The ohmic, homogeneous fluid model developed here for an interface stressed
by a perpendicular electric field haé been used for a similar investigation of
interfacial dynamics with a tangential field.(T) In that work, it is emphasized
that the model can be used to understand such interfacial responses as over-
stability, but only if the intrinsic bipolar conduction dominates that due to ion
streaming from the electrodes. Similar limitations on the physical significance
of the theory apply here, although in working with two fluids (one of which is
highly insulating and in electrical "series connection" with the other) the con-
duction is sufficiently small to obviate the necessity for ion filters on the
electrodes.

(8)

Some work has been done concerning the effects of finite conductivity

on the configuration of Fig. 1. However, the model used is not self-consistent,
in that account is not taken of the balance of shear stresses at the interface,
with viscosity brought in as a "second order" effect. For the study of parametric
instabilities and other situations dominated by the normal stress dynamics of the
interface, interfacial shears can possibly be ignored, but such an approach leaves
in doubt the main issue of the present investigation: the role of the electrical

1

shear stresses,

The same criticism applies to work related to the stability of cylindrical
(9)

interfaces where the balance of electrical shear stresses is ignored. Unless

considerable foresight is used, the singular nature of the interfacial electrical



forces makes the limit of zero viscosity ambiguous and renders results based
on an inviscid model meaningless. Certainly, the inviscid model cennot be
used consistently in any case in which electrical shear'forces are important,
except in terms of an "equivalent" model which must be justified a posteriori,
using the solution for the self-consistent problem.

An extreme case in which electrical shear forces are important is the one
where the interface supports-free charge, but where both conductors have ex-
tremely long relaxation times. Then, the interface dynamics are intimately
involved with the interplay of the electrical shear forces, and the convection
of charge at the interface. Here again, previous work has failed to recognize

(10,11)

this important point by not includihg the effects of electrical shear

stresses and the convection of surface charge.

II. THEORETICAL MODEL
A. Bulk Dvnamics

The basic electrohydrodynamic model for the fluids and their interface
is the same as that used to study an interface stressed by a tangential equili-
brium electric field.(T) The pertinent bulk equations are the same, and solu-

tions are merely summarized here for the mechanical and electrical perturbations

from equilibrium, defined in each region as the primed quantities

p= -opgz+ 1+ p(x,z,t)
i_ = EOTZ + ;' (X,Z,t) (3)
v= vi(x,z,t)

The static pressure and equilibrium electric field intensity 1 and Eo differ
in the two fluids and, like other variables, will be distinguished by (a) and
(v).
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Even with the electric field, the system is invariant to a rotation
about the z axis, hence there is no loss of generality in confining atten-
tion to perturbations that are independent of y. The interface deflection

from equilibrium takes the form
E = Re £ exp(st - jkx) ()

while the bulk solutions similarly are of the form

v' = Re -\’;-(z) exp(st - jkx) (5)

and, from Ref. T, the complex amplitude functions of z are written in terms of

the arbitrary constants, A, B, and C, as

v, = Aexp Bz + B expqz (6)

e = C exp Bz (1)

v.= - sz/k (8)

p = u(D?- k%~ 2 )Dv_/k? (9)

e, = ;jDex/k (10)
where D £ d/dz, B = - k in region (&) and B = k in region (b), with k a

1 1

positive, real number. Also, q =-gq_ = - (k2+ s/\)a)/2 and q = q = (k2+ s/\)b)/2

in the respective regions where a, and a must have positive real parts and

v = u/p.



B. Surface Coupling

The bulk solutions involve the six coefficients A, B, and C in each fluid
determined by boundary conditions on the interface. A model consistent with
the bulk equations requires that the normal and shear stresses on the interface
be in equilibrium and that both the normal and shear velocities be continuous.
Two additional conditions are provided by conservation of charge and continuity
of the tengential electric field.

To write the stress conditions, it is necessary to recall that in equili-
brium, the pressure distribution is hydrostatic, and that the normal equilibrium

component of electric stress gives

2
o (11)
where [F] = F® - . Infinitesimal perturbations are governed by the stress

balance, again in the z direction

v
Io'l - g€lol - T35 = febe 0 + lou 52 0 (12)

The balance of perturbation shear stresses requires that
% fer?] = 1 eEe ) + 0 &+iv-z- 0 (13)
T 9x N x 92 Ax

The last two equations have been linearized, so thaf they are to be evaluated
at the equilibrium position of the interface. Since the velocity is a continu-

ous perturbation quantity

0
o

IV, 0 (1)

it
o

0 v, 1 (15)
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The linearized x component of the condition nx(E] = 0is
28 -
le 0+ 5y 1Bl = o (16)
Finally, conservation of free charge on the interface requires that

avx a
ﬂqezﬂ + [eE] 55t -gg'ﬂeezﬂ = 0 (17)

The last six equations represent the required boundary conditions. Unlike the
tangential field case of Ref., T,with the perpendicular field the equilibrium
surface charge density Q = [ €E] mekes a linear contribution to the conserva-
tion of charge boundary condition.
It is now a straightforward matter to substitute the solutions summarized
by Egs. (6 - 10) into the boundary conditions (12 - 17). The resulting expres-
b ,a b a b

sions are linear and homogeneous in the coefficients (Aa,A ,B ,B ,C,C" ), and

the determinant of the respective coefficients is given by Eq. (18), with

(NOTE: See page 10 for Eq. 18)

r = glol- k2.

C. Dispersion Equation
The compatibility condition that the determinant of the coefficients vanish

is the dispersion equation. Considersble manipulation yields a form which, in

the limit of no electric field, reduces to that discussed by Chandrasekhar(IQ).
k (o - a ) Tk 3 k26JE] ek| | se . OfeE] 4
- + EL + + + = —
1+52 %7 % stlp + p) " s*(p +p) " @ k (oa + ab5

kyleE] 2k h 2d Julx 0 kd
4 - — - =
* Sggoa *o,) s (p_+p) d hs f(pa + o) " To_+ Qb)(eaEa+ €yl )= 0

(19)
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where

a, = pa/(o& + pb) ;oo = pb(oa + pb)

e = a/lq -k)+ ab(éa - k)

h o= a (g - k) - oplq, - k)

a = (q - k)(qy - k)

¢ = [EbEb(sea +0 )= e:aEa(seb + ob)]/[s(sa+eb)+ (cra + db)}
0 = [eEl/[s(e, + € )+ (o +0.)]

v = [E (se_ +o0, )+ E(se, +0.)]1/[se +¢e)+ (0, +ap)]

The complexity of Eq. (19) reflects the variety of possible situations
inherent to the model and emphasizes the necessity for relating the general case

to less involved limiting situations.
IITI. ZERO SHEAR-STRESS DYNAMICS

A. Dispersion Equation

As indicated in the introduction, there are two commonly encountered
limiting cases in which the interface is free of shear stresses. It is help-
ful to identify eand develop these limiting cases so that they can be placed in
contrast with the more involved situations in which shear effects are important.
With the lower fluid sufficiently highly conducting, relative to the upper one,

that Eb'<< Ea and eas/da,<< 1, we have ¢ -+ - eaEa’ 0+ 0, and Y + O so that

1 T k3 292] . ek sed [2kluld 2
e et e iy ] - R [ ]

(20)
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where

2 2
vy o= eaEa/(pa + pb) (Surface at consﬁant potential) (21)

In the opposite extreme, where both fluids have relaxation times €/o

long compared to l/IsI and there is absolutely no free charge on the inter-

face, so that [eE] = 0, Eq. (19) again reduces to Eq. (20), but with

2-1
2_ (ea_eb) Loy
I (pa + pb)(ea + Eb)

(Insulating liquids, no (22)
free surface éharge)

These two classes of interaction are referred to as EH-If and EH-Ip in Ref. 2.

The dispersion equation accounts for the effects of‘viscosity, but because the

electrical forces are always normal to the interface, the effects of the elec-

tric stress are similar to those of gravity and surface tensior. WNote that

there is no "equivalent surface tension", since the dependence of the elec-

tric contribution in Eq. (20) is on k2, whereas that of the surface tension

term is on k2.
B. Exchange of Stabilities

For a disturbance with a given wavelength, the electrical contribution to
Eq. (20) can be grouped with the gravity and surface tension terms. This makes
it evident that the principle of exchange of stabilities applies just as it does
in the absence of V, (Ref. 12, pagelhT). Thus, the limit of Eq. (20) as s + 0

represents the condition for incipient instability'
p (o -
kz-v;(%+§%_fﬁzo (23)

As the electric stress is réised, Eq. (23) shows that the Téylor wavelength

2wk¥* is the first to become unstable, with a threshold

o 27\ *_’/3(%‘”)
V; = k’(-‘-)-;—;—p-b>, kW = ——,I'.-——?'- (2k)
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It should be clear from this discussion that, insofar as incipience of
instability is concerned, previous work on zero shear stress interactions

based on an inviscid model pertains.(l’Q)

C. Growth Rates: Liquid and a Gas

The case of a liquid and a gas is particularly important. Common exam-
ples are air and w;rater, in which Eq. (21) is appropriate, or Freon and its
vapor in a high-frequency electric field, where Eq. (22) is appropriate. The
kinemgtic viscosities are on the same order; hence q, % 9y while LR TN

In normalized form, Eq. (20) then becomes

2 2
i—-—+ 1+ k? - k P2+ “g-_-:—}_s_z - (g-®)[(g-k)sM]? (25)

where Py = P, QP = D oa = 0 so that the normalization which reflects the

essential role of the Taylor wavelength 27r/k*, is

k = k/k' , g= a/k", s = S(,T/pg’)l/“
1 1 (26)
M= ule/ot)? , p= v (pa"m)%

Note that this represents both of the zero shear cases by simply identifying P
with the appropriate V; [Eq. (21) or (22)].

In section V, it will be shown that Eq. (25) is a special case of the
general one where the relaxation times in both fluids are extremely long com-
pared to dynamical times of interest. There, a seventh order polynomial in g
is given which is obtained by expanding Eq. (25), using the definition
s = M(q® - k?) to eliminate s. Thus, Eq. (26) is solved numerically for g,

which in turn gives s.
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The dependence of s on k with P as a parameter is illustrated with Fig.
2a, which is based on data for a relatively inviscid liquid (10 es transfor-
mer oil), and Fig. 2b, computed with M increased by a factor of 102,

The two sets of curves in ¥Fig. 2a are for P slightly less and somewhat
greater than the)fg_required for instability. Indicated on the axes are the
wavenumbers k = Eu,l = 2?/2 + [(Ef/2)2 - l]ﬁi that bound the unstable band
of wavenumbers, the wavenumber for maximum rate of growth k = k = (2?/3)

+ [(P%/3)% - 1/3]¥& and the maximum rate of growth s , all predicted by the
inviscid theory. Note that there is little effect on any of these quantities
from the finite viscosity M, at least in the range shown. By contrast, if M
is increased by a factor of 102, the dynamics are altered considerably (Fig.
2b). Waves with P = 2 and k small are at first stable and represented by a
complex conjugate pair of roots which, with increasing k, switch to two purely

damped modes. These in turn become one purely damped and one purely growing

mode; finally, at high wavenumbers, they hecome two modes of a purely damped

character.

IV. INFINITE RELAXATION TIME LIMIT: LIQUID AND A GAS

An important case in which shear forces can play an essential role arises
when both fluids have relaxation times £€/0 that are very long compared to 1/|s]|,
but there is an equilibrium surface charge on the interface. Then, any distor-
tion of the interface must be accompanied by an electrical shear stress, and an

attendant surface convection.
A. Dispersion Equation

In particular, consider the case of a liquid and a gas, so that in Eq. (19)
not only are 0& + 0, °b + 0, Eé = eo’ eb = Keo, but also ua<< Uy s while

Vo R Ve It follows that the dispersion equation is
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g2 \ 27 (g2
{:—— +1+k-Pxk+ %{:— + (g_-k)Qz}
k S 7T a-kjk ==

- _E_ﬂ_}%_l_‘._)_ {(g—g)gbj_- 1521_’}2 =0 (27)

jo

vhere, in addition to the normalization variables of Eqs. (26) we have

P = [El%e_ k/K*T(1+ k)
Q* = [eel?/mx* e (1+x) (28)
W2 (1+k) ol

L A S R s )

Note that the definition of P is consistent with that in Eqs. (26), if Vv is
taken as that for the case of a polarization interaction[Eq. (22)]. The variable
Q is proportional to the equilibrium surface charge on the interface; as sug-
gested in Sec. III, Eq. (27) in the limit Q + 0, and hence W + O, reduces to Eq.
(25) when this latter equation is written for the polarization case. Substitu-
tion in Eq. (27) for s in terms of g gives the dispersion equation written as a

polynomial in g.

a’M*] + g®lx M'] + o*[KkM*] + g'lmM’Q?- 3k°M"]
+ @ IM* [k + K°- k*(P?- @%+ 2W?)] - 5 k'M* }
+ g_z {35524_“" }_{_gz[lg_ + 1{_3__ _132(2_24_ 52_2__ 2 !z)] } (20)
+ g {3 M5~ K22k + K°- K*(P%- Q%+ 2 W*)]}

- kM0 (k¢ K- KPP (0M- k 97)- 2 ROWIME- kWS } = 0

Numerical solutions for g's having positive real parts in turn give g = M(q®- 1:_2).
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Although the physicsl case in which the lower fluid is perfectly conduct-
ing while the upper one is insulating is amltogether different from the situa-
tion for which Eq. (29) is derived, it is represented mathematically by Egq.

(29) if @ = W = 0 and P is evaluated using Eqs. (21) and (26).

B. Marginal Tnstability

The essential role of the electric shear stresses in the infinite relaxa-
tion time linit can be appreciated by considering the manner in which Q and W
influence the exchange of stabilities. If Q, and hence W, are zero in Eq. (27),
and then the limit is taken where s + 0, it is found that instability is first
incipient at the Taylor wavelength on/x* with the voltage as given by Egqs. (22)
and (24). That is, the instability has the same incipient conditions as for
the purely dielectrophoretic interaction with the interface, and the normalized

jump in electric field intensity required for instasbility is
P= V2 (30)

By contrast, if Q, and hence W, are finite in Eq. (27) and the limit is taken
where g + 0, the Taylor Wavelength is again the first to give incipient insta-

bility, but the value of P required is only

R: 6-[1 — K] (31)

1l + K

In general, for Q finite, exchange of stabilities is incipient with k = Ef

for P and Q satisfying

~

2
p? - MK pgsg = 21X (32)

- 1+ K= = 7 (1+xk

In terms of the electric field intensities at the interface, this expression

is identical with
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*

EaE: + EbE: = 2 Tk ; {33)

a condition for incipient instability that would be obtained if the interface
(2, pg. 48)

vere regarded as perfectly conducting and bounded on either side by
perfectly insulating fluids.

The demarcation given by Eq. (32) between regimes of stability end in-
stability in the P - g_plane'is shown in Fig. 3. This figure also shows the
singular regime of stability at Q = 0, with a maximum P = / 2 as given by Eq.

(30).

C. Dynamics

The physical significance of the contours of maréinal exchange of sta-
bilities shown in Fig. 3 is clarified by computing the complex frequencies from
Eq. (29), calculations which indicate that the first instabilities to appear
as the electric stress (E_and g) is increased are indeed static, and satisfy
the principle of exchange of stabilities. .

The dependence of s on Q is characterized for low and high viscosity li-
quids by Figs. baand 4b, where P =1, a value large enough to secure instability
according to condition (31), but not large enough according to Eq. (30). Hence,
in terms of the P - Q plane of Fig. 3, the coﬁplex frequencies are given in Fig.

L for a line parallel to the Q axis and passing through the points denoted (a) -
(c). These points are also identified on Fig. 4. At point (a) of Fig. ba, where
Q = 0, there is a single pair of complex conjugate frequencies, indicating damped
oscillations. With finite Q, the complex conjugate roots are retained, but in
addition there is a purely real root, indicating static instability. The growth
rate at first increases rapidly with Q, then goes to zero as the point (b) is
approached. In the range (b) - (c) the interface is again stable, but with motions

represented by two complex conjugate pairs of roots. Beyond point (c) there is
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again a static instability. In the more viscous case of Fig. Ub, roots are
real; one unstable and two damped from {(a) - (b) and beyond (c), and three
damped in the range (b) - (c).

The contours shown in Fig. 3 are those of zero growth rate or marginal
instability. If Eq. (29) is solved for contours of finite constant growth
rate (g = 0.2, §;= 1), these appear as shown in Fig. 5. The contours tend
toward the marginal stability curves as the viscosity is reduced.

The marked effect of the electrical shear stresses resulting from the com-
bination of a finite equilibrium surface charge density, §, and a perfectly
insulating liquid is now clear. Remember that the skewed ellipse of Fig. 5
is identical to the curve that would be obtained with the assumption that the
interface is perfectly conducting [Eq. (32) or (33)]. With the insulating
interface, charge convection replaces charge conduction in adjusting the charge
distribution so that the electric field ihtensity remains perpendicular to the
deformed interface. The remarkable fact is that the convection process can
occur so rapidly in liquids like transformer oil that on the time scale of many
experimental situations it is difficult to tell the difference between the per-
fectly conducting interface and one that is pegfectly insulasting. As will be
pointed out in Sec. VII, this is true particularly in view of the extreme sen-
sitivity of the stability condition to gmall amounts of equilibrium surface

charge.
V. INSTANTANEOUS RELAXATION LIMIT

Consider now an extreme which is the opposite of that described in Sec.
IV: the electrical relasxation times in both fluids are short compared to times

1/|s| of interest.

}sea/oal« 1, |seb/ob\ <<'1 (34)



M=334

N M=334x1072

Fig. 5

Contours of constant growth rate s = 0.2, k = 1.0 in the P-

plane as a function of the viscosity parameter, M. In the limit

of zero viscosity, the contour becames the marginal stability

curve of Fig. 3; k.= 2.56.
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In addition, it is assumed that Is!/v <<k? ; that mechanical motions are
characterized by times which are long compared to the viscous diffusion time

1/k3v. Then, Eq. (19) reduces to & simple dispersion equation which is quad-
ratic in s.
2 2 y - 3 2 -
(g +0y)s® + sl2k™(u + u )] + [gk(p, =0 ) + Tk’ k5] = 0 (35)
where

S

Ej?(c E + E +
jEl(e Eo0. - Eo ) + Verl " (9,8," 0y ) (£g8g" SF) (6 + o)
a ab vip%a t2(u + u )(o + o )+ [leEf2] a b
a 'b s b
It is clear from Eq. (35) that overstability is not possible, and once
again the principle of exchange of stabilities is wvalid. Incipience of in-

stability occurs as the last term in Eq. (35) becomes zero.

k? - k%i- (k)2 = 0 ; x*= \/g(pb- pa)/T (36)

With pb > pa , the equilibrium is stable in the absence of an electric field
(S =0). Then, as S is raised, the first wavelength to become unstable is
again the Taylor wavelength 2w/k*. The condition for instability at that most

critical wavelength is

S *

7 = k (37)

In this instantaneous relaxation limit, the equilibrium fields, like the
perturbation fields, are determined by the conduction. Thus, EE»= (oa/ob)Ea R

and Eq. (37) is written as

P2 = {(1 ~oZ) + [(1+0E)? + hGZ]%}/Y (38)
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where P2 = ¢ Ez/k*T
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The dependence of P; on the ratio of conductivities Ua/cb, as given by Eq.
(38), is illustreted in Fig. 6. For either °a/°b>> 1 or ca/Ob << 1, Pg
approaches a value that is predicted by using a model that assumes the inter-
face to be perfecély conducting and hence free of electrical shear stresses
[Eq. (33)]. However, in the range where the conductivities are on the same
ordér, the electrical shear stresses come into play.to a degree that depends
on the viscosity parameter, L.

It is interesting to note that in the particular limiting case in which
oa/ob + ea/eb, so that there is no equilibrium interfacial charge, Eq. (38)
becomes

Pg = 2(oa/orb + l)/(oa/ob - 1) (39)

as can most easily be shown by resolving Eq. (37) for Pg after tasking the
limiting case. Because Eq. (39) is valid only if oa/cb = ea/e‘ , this is
the same condition as given by Egqs. (22) and (24). Thus, due to the polari-

zation interaction discussed in Sec. III, the interface has a threshold for



100

1.0

Fig. 6 Dependence of the normalized electric pressure Po evaluated in
the upper fluid on the ratio of conductivities. The parameter).
is proportional to the sum of the viscosities and to the conduc-~

tivity of the upper fluid. For these curves, ea/eb = 1,22,
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static instability even in the absence of an equilibrium surface charge den-
sity. Note that this threshold is independent of the viscosity parameter I
end, for small values of I, tends to be the peak value of Pg as oa/0b+ ea/eb

(Fig. 6.).
VI. THEORETICAL OBSERVATIONS INCLUDING FINITE RELAXATION TIME EFFECTS

Even though the limiting situations of Secs. III - V differ greatly in
terms of physical parameters, they have similarities in their dynamical behav-
ior. In all cases, instabilities exhibit a purely exponential growth, and, for
a wide range of physical parameters, the interface stressed by a dc field tends
to behave as though it were infinitely conducting. Even with perfectly insulat-
ing 1liquids (Sec. IV), to a degree determined by the viscosity parameter M,
convection of equilibrium surface charge induced by interfacial shear stresses
leads to instabilities with attributes approximating those for the perfectly
conducting case of See. IIT.

In the opposite extreme of Sec. V, where relaxation is considered as
instantaneous, it is found again that, unless the free charge density on the
interface approaches zero, the incipience of instability is essentially as for
the perfectly conducting interface. The degree to which this is true for a
given ratio of conductivities depends on the viscosity parameter I; in the limit
L + 0, the range of conductivity ratios over which the perfectly conducting model.
fails to approximate the instability condition becomes vanishingly small.

As might be expected, a similar behavior is likely over a range of para-
meter values, even if the characteristic dynamical times 1/|s| are on the order
of ¢/o for one or both of the fluids. This can be shown from a number of view-
points, one of which is to take the limit of the dispersion equation (19) as the

fluid viscosities become vanishingly small with the electric field finite. Then,
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regardless of the liquid conductivities, Eq. (19) reduces to the dispersion

equation for waves on a perfectly conducting interface between inviscid fluidsgz)
Note that, if this limiting result is to be obtained by using an inviscid model
at the outset, the boundary condition requiring conservation of charge at the
interface must be ignored, and the condition of zero electric shear stress
retained.

A quantitative statement of con&itions under which the interface behaves as
a perfectly conducting surface can be made in terms of an electric Hartmann num-
ber which generally depends on the particular combination of physical parameters,

but takes the form(l3)

et
H, = [leEl?/8u(o, + 0,)] (10)

In Eq. (19), if the electric field intensity is sufficiently large that

se ofeE] |
kd 0% Py | )
2ul sh_| leEl
p+p, ~ ka| s%pa +ab5| (h2)
and ’ sh +2ﬂuﬂ « e(eaEa + EbEb) , (h3)
kd~ o+ 0 (pa +0,)

then, regardless of the relaxation times, the dispersion equation reduces to

Tk 3 k?
pa +pb pa‘fpb

s + gk(o ~ 0 ) +

2
(€, E2 + €,B2) + El(;-%- = 0 (L)

or that for a perfectly conducting, inviscid interface with an additional term

to account for viscous damping. In this approximation, the electric shear
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stresses dominate those due to viscosity. As a particular example, suppose
that u_ A W, and o, % P> 50 that v Ay v, endq & q,- Then, conditions (42)
and (43) are satisfied. If charge'relaxation effects are to be important, then

S n (Ga + Gb)/(ea + sb) and Eq. (b41) is

s feE]?
k(q %) ¢ 20(o, + o) (k5)

To obtein & conservative estimate of whether or not the approximation is justi-
fied, @ - k + s/2Vk in Eq. (45). It follows that the interface responds essen-
tially as a perfect conductor if H,, as given by Eq. (40), is large compared
to unity. In less particular instances, Egs. (42) and (43) also require that

electric Hartmann numbers be large.

VII. EXPERIMENTS
As indicated in the introduction, there are at least three experiments

that give insight into the mechanisms of instability on the interfaces of highly
insﬁlating liquids. In all of these discussed here, the upper fluid is air or
an electronegative gas, and the interfacial electric stress is established by
means of a potential, V, applied between electrodes parallel to the interface
and at z = a and 2z =-b. Properties of the two liquids used are given in Table
I: the relaxation times are in all cases in excess of 10 seconds. Effects of
fringing fields are to a certain extent avoided by using the guard ring arrange-

ment depicted in Fig. 7. The experiments differ in the temporal dependence of V.

A. Voltage Applied Gradually

' First, consider the case where a dc voltage is established by raising the
potential, V, at a rate low enough (over a period of a minute or more) to allow
the equilibrium charge, Q, to relax to the interface. Then, the electric field

intensity is excluded from the liquid so that [Ef = E_ = V/a and, according to



Fig. T Cross-sectional view of simple apparatus for measuring conditions
for incipient instability. The liqﬁid, C, is contained by a
porous Balsa wood guard ring, B, saturated by liquid and as
nearly as possible of the‘same electricalvproperties as the liquid,

Y

and a metal bottom electrode, A.
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Eqs. (21) and (24%), the interface becomes unstable as V V,, where

2 l/lf
Vv, = albpgr/e?] (46)

It is convenient to picture this experiment in terms of the P-Q plane of
Fig. 3. By the definitions of P and Q, Egs. (28), this experiment is con-

ducted along a path
P= V@ (b7)

in the P-Q plane, with the equilibrium surface charge proportional to the

applied voltage:

* Y.
Q= (v /aMe /Tk (1 +«)]" (48)

Thus, as the voltage is raised the experiment follows the traj}ectory A-~B-D of
Fig. 8. The instability condition, Eq. (46), is the voltage at which the
trajectory intersects the ellipse.

The data point shown in Fig. 8 for this type of experiment is within 10%
of the theoretically predicted value of P. A more detailed comparison between
theory and experiment is made possible by Figs. 9a and 9b, where the voltage
for incipient instability is given as a function of the upper electrode-inter-
face spacing, for both silicon oil (the liquid used for Fig. 8) and transformer

0il. The curve denoted by "gradual" is predicted by Eq. (L46).
B. qutagé'Apnlied Suddenly

In the second experiment, a dc voltage is again raised slowly to follow
the trajectory A-B of Fig. 8. Then, with V = VO, vhere Vo is yet less than
that given by Eq. (46), there is en equilibrium surface charge density on the

interface given by Eq. (48) and the voltage is sbruptly switched from v, to Vp.
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Thus, Q remains constant but P changes such that
feE] = q ; Ega+ Eb= Vo (k9)

It follows that
1
B = Ver [ (o/a+1) 4V (k= DIKT(L+K) (b4 ax) T % (50)

and the experiment follows the trajectory B-C of Fig. 8. If Vp is increased
so that trajectory B-C intersects the ellipse, instability is predicted by

either Eq. (32) or (33).

The data denoted as "pulsed" in Fig. 8 are taken in this manner, again
using silicon oil. Insofar as can.be determined experimentally, the instability
condition follows the elliptical contour of Fig. 8 within sbout 10%, even as
Q + 0 (in the limit where the initial bias voltage v, = 0). 1In fact; the data
and curves of Figs. 9a and 9b denoted as "pulsed" are for this limiting case of

V_ = 0, with the curves predicted by either Eq. (32) or (33), with Q = o!

C. Voltage Alternating at High Frequency

Now, consider the dielectrophoretic limit of no interfacial charge, Q,
as obtained by applying a voltage of sufficiently high frequency (400 Hz) that
charges do not have time to relax to the interface, and damping prevents a res-
ponse of the liguid to the pulsating component of the electric stress. Then,
according to Eq. (30), instability is incipient as P = {Eﬁ This is shown as
the pointF on the P axis in Fig. 8, a critical point that can be written in
terms of the critical rms voltage V = Vd by using Eq. (28) together with Egs.
(k9), with @ = O:

_ ob*Ka r. % Y2
vy = E—:—i-[k 2T(k + 1)/€°K] (51)

The predictions of this expression and data for two liquids are also shown in

Figs. 9a and 9b, and are within experimental errors of each other.
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voltage on the interface electrode spacing. In the pulsed case,
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D. Discussion of Experiments

The difference between éhe theoretical thresholds for instaebility with
the de field‘voltage turned up slowly, and with it turned on abruptly, are
not large. As Figs. 9a and 9b show, the experimental results for these two
situations are essentially the same for all liquids tested, although there is
s slight tendency for the pulsed experiments to require a higher voltsge, as
suggested by the theory. |

By contrast, the critical voltage for the ac experiment is far higher than
for either of the dc experiments, and within experimental errors of the appro-
priate theoretical curves. Thus, there is a clear verification that the dc
transient experiment does not approach the dielectrophoretic limit as the
initial bias volfage (and‘hence, presumsbly, the initial interfacial surface
charge) approaches zero. |

It is essential to recognize that the electrical relaxation times of both
liquids (Table I) are much longer than the time required for observation of
instability in the pulsed experiment. These relaxation times can be established
in several ways, including conductivity cell measurements and electromechanical

(1k)

resonance techniques. However, the most direct of these is simply to replace
the upper electrode (Fig. T) with a flexible cantilevered foil strip which acts
as an electrometer movement. With the voltage applied suddenly, the metal strip
abruptly moves downward in response to the charging current, but then continues
to move downward with a time constant of 10 or more seconds, asymptotically
approaching a static equilibrium. A recording of this lastter motion reflects

the time required for establishing that part of the force due to images of the
equilibrium free charge on the interface.

The difference between the resgults with the abrupt spplication of a cons-

tant voltage and with an ac voltage is attributable to the extreme sensitivity
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of the instability condition to small amounts of equilibrium surface charge.
This is illustrated by Fig. 5; where the contour of constant growth rate for
M= 3.3Lx1072 is for the cese of transformer oil. In terms of actual time,
the growth rate s = 0.2 corresponds to an instability time constant of

7.5 x 1072 sec. Through the mechanism of the interfacial shear stress, even

a small amount of interfacial equilibrium charge is extremely influential in
determining incipience of instability with these liguids. For a time constant
of 0.1 seconds, the contour of constant growth rate is very nearly the ellipse,
except in the immediate vicinity of the P axis. In spite of the extremely long
time constant for establishing the equilibrium surface charge, only a small por-
tion of that charge is required to ﬁake the interface behave like a perfectly
conducting deformable surface. Even more, this small fraction of the charge

can probably be characterized by a shorter time congtant than for the ﬁajority
of carriers. It is likely that several mechanisms for electrical conduc-
tion, each with its own characteristic time constant, are at work in the commer-
cial grade liquids used, and it is the longest time constant that is referred to
here. Moreover, it is possible that the interfaces support a residual free charge.

VIII CONCLUDING REMARKS

In the last four sections, several viewpoints are used to emphasize,
theoretically and experimentally ,the importent consequences of the electrical
shear surface force densities induced in various situations on a deforming inter-
face stressed by an initially perpendicular electric field - forces that bring
into play viscous shear stresses and the convection of surface charge. For
liguids of low or moderate viscosity, these shear forces tend to induce that
convection of the interfacial free charge required to make the electricsl inter-

facial shear stresses vanish. Thus, the interface tends to behave as a perfectly
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conducting surface, with the charge convection replacing the conduction and
the electric field tending to induce static (aperiodic) instability.
This work complements investigations previously reported in which the

(n

equilibrium field is tangential to the interface. In that work it was shown
that a large electric Hartmann number generally implies overstability. By
contrast, in the case presented here, static instability is implied by a.
large electric Hartmann number regardless of the electrical relaxation time.
Finally, it should not be overlooked that useful results on the effects

of viscosity on growth rates of instability, with and without the influence

of charge relaxation, are a byproduct of the development.
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TABLE I Liquid Properties

Properties Used Dow Corning G.E, 10C
in 200 Series Transformer
MKS  Units Silicon 0il 0il
Relative permittivity, « 2.63 2.56
Surface tension, T 2.01 x 10-2 N by 1072
Viscosity, u ~ 10~2 Y 1072
Density, p 0.94 x 10?2 0.87 x 10°
Relaxation time, €/o > 10 secs. ‘ > L0 secs.
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Configuration of interface and epplied electric field intensity,

Complex normalized frequency, s, as a function of normalized wave-
number, k, for cases of zero electrical shear stfess. Onset of
instability occurs as the normalized electric ﬁressure P = V2

so that a stable and an unstsble case are shown. The normalized

viscosity M = 3.3k x 1072 , illustrative of transformer oil with

p= 0.87x lOskg/ma, T= L x 10’2n./m., H= 9,15 x lOnaNusec/mz.

Parameters as in (a), except that M = 3.34, to illustrate high

viscosity effect.

Regime of stability in the P-Q plane, where Q is the normelized
surface charge and P is the normalized jump in electric field
intensity at the interface. As P is raised with Q = O, poléari-
zation (dielectrophoretic) instability occurs at A, while the free
charge instebility occurs (asymptotically) at B. Raising the voltage
slowly gives the trajectory shown, with instability at the point C.

K = 2.56, characteristic of transformer oil.

Normalized complex frequencies, s, as a function of surface charge
density, Q. Points (a) - (c) correspond to those shown on Fig. 3,
vhere P = 1.

The viscosity is that of transformer oil, M = 3.3k x 1072, From
(a)-(b) and beyond (c), there are a complex conjugate pair of roots
and a purely positive real root. From (b)-(c) there are two complex

conjugate pairs of roots.

Viscosity parameter M = 3.34. From (a)-(b) and beyond (c), there
are three purely real roots, one corresponding to instability. From-
(b)=(c) there are three roots representing damping. The third root,

now shown, is essentially constant at g = 3.
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Fig. 5 Contours of constant growth rate s = 0.2, k = 1.0 in the P-@
plane as a function of the viscosity parameter, M. In the limit
of zero viscosity, the contour becomes the marginal stability

curve of Fig. 3; «k = 2.56.

Fig. 6 Dependence of the normalized electric pressure Po evaluated in
the upper fluid on the ratio of conductivities. The parameterz:
is proportional to the sum of the viscosities and to the conduc-

tivity of the upper fluid., For these curves, 8a/eb = 1.22.

Fig. T Cross-sectional view of simple apparatus for measuring conditions
for incipient instability. The liquid, C, is contained by a
porous Balsa wood guard ring, B, saturated by liquid and as
nearly as possible of the‘same electrical properties as the‘liquid,

and a metal bottom electrode, A.

Fig. 8 Three experiments represented in the E:g plane. With voltage
raised gradually, trajectory A-B-D is followed, while if it is
raised slowly and then increased sbruptly, A-B-C is followed.
With an ac voltasge, the trajectory is A-F. Data and theoretical

curves are for silicon oil.

Fig. 9 Three experiments of Fig. 8, showing dependence of instability
voltage on the interface electrode spaciné. In the pulsed case,
the initial bias voltage is zero, corresponding to following the
trajectory A-G of Fig. 8. The curves are predicted by the appro-
priate theoretical expressions.

a) Silicon oil

b) Transformer oil



